The YarraWaterAnalysis package provides tools for analyzing and visualizing streamflow data from the Yarra River at McMahons monitoring site.
You can install the development version of YarraWaterAnalysis from GitHub with:
# install.packages("devtools")
# devtools::install_github("ETC5523-2025/assignment-4-packages-and-shiny-apps-ChenLiu0123")This is a basic example which shows you how to solve a common problem:
library(YarraWaterAnalysis)
## basic example code
calculate_flow_stats(yarra_water_data)You can use this function to calculate basic statistics for Yarra River streamflow data
# Analyze seasonal patterns
seasonal_stats <- analyze_seasonal_patterns(yarra_water_data)
print(seasonal_stats)
#> # A tibble: 4 × 6
#> season avg_flow median_flow max_flow min_flow n_observations
#> <chr> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 Autumn 248. 75 14085 0 3347
#> 2 Summer 272. 102 6131 0 3535
#> 3 Winter 922. 283 17245 0 3407
#> 4 Spring 1023. 366 18687 0 3823You can use this function to analyze seasonal patterns
#> # A tibble: 6 × 18
#> site_id site_name datetime data_type parameter_id parameter value
#> <dbl> <chr> <dttm> <chr> <dbl> <chr> <dbl>
#> 1 229143 YARRA @ CH… 1975-10-26 23:59:59 Quantity 142. Streamfl… 18687
#> 2 229142 YARRA @ TE… 1975-10-26 23:59:59 Quantity 142. Streamfl… 17399
#> 3 229143 YARRA @ CH… 1977-07-01 23:59:59 Quantity 142. Streamfl… 17245
#> 4 229143 YARRA @ CH… 1975-10-27 23:59:59 Quantity 142. Streamfl… 16014
#> 5 229143 YARRA @ CH… 1977-06-20 23:59:59 Quantity 142. Streamfl… 15849
#> 6 229143 YARRA @ CH… 1977-06-19 23:59:59 Quantity 142. Streamfl… 15164
#> # ℹ 11 more variables: unit <chr>, quality <dbl>, resolution <chr>,
#> # date <date>, year <dbl>, month <ord>, day <int>, season <chr>,
#> # flow_category <chr>, log_flow <dbl>, flow_7day_avg <dbl>You can use this function to detect high flow event